A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template-primer.
نویسندگان
چکیده
Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PP(i)-dependent phosphorolysis catalysed by wild-type and AZT (3'-azido-3'-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template-primer (K(d)=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template-primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues.
منابع مشابه
Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision.
Understanding the mechanisms of HIV-1 drug resistance is critical for developing more effective antiretroviral agents and therapies. Based on our previously described dynamic copy-choice mechanism for retroviral recombination and our observations that nucleoside reverse transcriptase inhibitors (NRTIs) increase the frequency of reverse transcriptase template switching, we propose that an equili...
متن کاملMonoclonal antibody-mediated inhibition of HIV-1 reverse transcriptase polymerase activity. Interaction with a possible deoxynucleoside triphosphate binding domain.
A series of monoclonal antibodies against p51/p66 human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT) were prepared by immunizing mice with the native enzyme immobilized on nitrocellulose. One of these antibodies, designated 1E8, was found to inhibit both RNA-dependent and DNA-dependent polymerase activities of RT but had no effect on the RNase H activity of the enzyme. This inhib...
متن کاملSynthesis and molecular docking of novel N-((2-chloroquinolin-3-yl) methylene)-4-methylbenzenamine derivatives as anti-HIV-1 reverse transcriptase inhibitors
In this research work, a proficient method has been developed for the preparation of novel N-((2-chloroquinolin-3-yl) methylene)-4-methylbenzenamine derivatives from 2-chloroquinoline-3-carbaldehyde derivatives and p-toluidine in ethanol as solvent and using catalytic amount of acetic acid under reflux conditions to obtain desired products in good yields. The identification of all the synthesiz...
متن کاملTrapping HIV-1 reverse transcriptase before and after translocation on DNA.
A disulfide cross-linking strategy was used to covalently trap as a stable complex (complex N) a short-lived, kinetic intermediate in DNA polymerization. This intermediate corresponds to the product of polymerization prior to translocation. We also prepared the trapped complex that corresponds to the product of polymerization after translocation (complex P). The cross-linking method that we use...
متن کاملModulation of Hiv - 1 Reverse Transcriptase and Family a Dna
Title of Document: MODULATION OF HIV-‐1 REVERSE TRANSCRIPTASE AND FAMILY A DNA POLYMERASE PRIMER-‐TEMPLATE BINDING Katherine Joan Fenstermacher, Doctor of Philosophy 2014 Directed By: Dr. Jeffrey J. DeStefano Professor Department of Cell Biology and Molecular Genetics Polymerases are enzymes used by all cellular and viral organisms to replicate their genomes. The human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 405 1 شماره
صفحات -
تاریخ انتشار 2007